首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5953篇
  免费   249篇
  国内免费   152篇
  2023年   45篇
  2022年   54篇
  2021年   102篇
  2020年   102篇
  2019年   125篇
  2018年   137篇
  2017年   121篇
  2016年   111篇
  2015年   175篇
  2014年   291篇
  2013年   387篇
  2012年   168篇
  2011年   247篇
  2010年   202篇
  2009年   267篇
  2008年   317篇
  2007年   326篇
  2006年   296篇
  2005年   262篇
  2004年   264篇
  2003年   227篇
  2002年   205篇
  2001年   135篇
  2000年   150篇
  1999年   154篇
  1998年   143篇
  1997年   158篇
  1996年   115篇
  1995年   108篇
  1994年   92篇
  1993年   105篇
  1992年   102篇
  1991年   79篇
  1990年   80篇
  1989年   73篇
  1988年   68篇
  1987年   49篇
  1986年   32篇
  1985年   49篇
  1984年   66篇
  1983年   31篇
  1982年   41篇
  1981年   32篇
  1980年   15篇
  1979年   19篇
  1978年   5篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
  1974年   2篇
排序方式: 共有6354条查询结果,搜索用时 15 毫秒
1.
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure–function studies of metalloid porins, including the basis of their substrate selectivity.  相似文献   
2.
Abstract

The hepatitis C virus (HCV) encodes the p7 protein that oligomerizes to form an ion channel. The 63 amino acid long p7 monomer is an integral membrane protein predominantly found in the endoplasmic reticulum (ER). Although it is currently unknown whether p7 is incorporated into secreted virions, its presence is crucial for the release of infectious virus. The molecular and biophysical mechanism employed by the p7 ion channel is largely unknown, but in vivo it is likely to be embedded in membranes undergoing changes in lipid composition. In this study we analyze the influence of the lipid environment on p7 ion channel structure and function using electrophysiology and synchrotron radiation circular dichroism (SRCD) spectroscopy. We incorporated chemically synthesized p7 polypeptides into artificial planar membranes of various lipid compositions. A lipid bilayer composition comprising phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (4:1 PC:PE) led to burst-like patterns in the channel recordings with channel openings lasting up to 0.5 s. The reverse ratio of PC:PE (1:4) gave rise to individual channels continuously opening for up to 8 s. SRCD spectroscopy of p7 embedded into liposomes of corresponding lipid compositions suggests there is a structural effect of the lipid composition on the p7 protein.  相似文献   
3.
Small conductance Ca2+-sensitive potassium (SK2) channels are voltage-independent, Ca2+-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca2+ permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3′ terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca2+ and Ca2+-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca2+ influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses.  相似文献   
4.
Transient receptor potential melastatin 4 (TRPM4) is a broadly expressed Ca2+ activated monovalent cation channel that contributes to the pathophysiology of several diseases.For this study, we generated stable CRISPR/Cas9 TRPM4 knockout (K.O.) cells from the human prostate cancer cell line DU145 and analyzed the cells for changes in cancer hallmark functions. Both TRPM4-K.O. clones demonstrated lower proliferation and viability compared to the parental cells. Migration was also impaired in the TRPM4-K.O. cells. Additionally, analysis of 210 prostate cancer patient tissues demonstrates a positive association between TRPM4 protein expression and local/metastatic progression. Moreover, a decreased adhesion rate was detected in the two K.O. clones compared to DU145 cells.Next, we tested three novel TRPM4 inhibitors with whole-cell patch clamp technique for their potential to block TRPM4 currents. CBA, NBA and LBA partially inhibited TRPM4 currents in DU145 cells. However, none of these inhibitors demonstrated any TRPM4-specific effect in the cellular assays.To evaluate if the observed effect of TRPM4 K.O. on migration, viability, and cell cycle is linked to TRPM4 ion conductivity, we transfected TRPM4-K.O. cells with either TRPM4 wild-type or a dominant-negative mutant, non-permeable to Na+. Our data showed a partial rescue of the viability of cells expressing functional TRPM4, while the pore mutant was not able to rescue this phenotype. For cell cycle distribution, TRPM4 ion conductivity was not essential since TRPM4 wild-type and the pore mutant rescued the phenotype.In conclusion, TRPM4 contributes to viability, migration, cell cycle shift, and adhesion; however, blocking TRPM4 ion conductivity is insufficient to prevent its role in cancer hallmark functions in prostate cancer cells.  相似文献   
5.
6.
Intestinal cholesterol absorption is specifically inhibited by the 2-azetidinone cholesterol absorption inhibitor ezetimibe. Photoreactive ezetimibe analogues specifically label a 145-kDa protein in the brush border membrane of enterocytes from rabbit small intestine identified as aminopeptidase N (CD13). In zebrafish and mouse small intestinal cytosol, a heterocomplex of Mr 52 kDa between annexin II and caveolin 1 was suggested as a target of ezetimibe. In contrast, in the cytosol and brush border membrane vesicles (BBMV) from rabbit small intestine of control animals or rabbits treated with the nonabsorbable cholesterol absorption inhibitor AVE 5530, both annexin II and caveolin 1 were exclusively present as monomers without any heterocomplex formation. Upon immunoprecipitation with annexin II a 52-kDa band was observed after immunostaining with annexin II antibodies, whereas no staining of a 52-kDa band occurred with anti-caveolin 1 antibodies. Vice versa, a 52-kDa band obtained by immunoprecipitation with caveolin 1 antibodies did not stain with annexin II-antibodies. The intensity of the 52-kDa band was dependent on the amount of antibody and was also observed with anti-actin or anti-APN antibodies suggesting that the 52-kDa band is a biochemical artefact. After incubation of cytosol or BBMV with radioactively labelled ezetimibe analogues, no significant amounts of the ezetimibe analogues could be detected in the immunoprecipitate with caveolin-1 or annexin II antibodies. Photoaffinity labelling of rabbit small intestinal BBMV with ezetimibe analogues did not result in labelling of proteins being immunoreactive with annexin II, caveolin 1 or a 52-kDa heterocomplex. These findings indicate that the rabbit small intestine does not contain an annexin II/caveolin 1 heterocomplex as a target for ezetimibe.  相似文献   
7.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   
8.
Fluorescence enables the display of wavelengths that are absent in the natural environment, offering the potential to generate conspicuous colour contrasts. The marine fairy wrasse Cirrhilabrus solorensis displays prominent fluorescence in the deep red range (650–700 nm). This is remarkable because marine fishes are generally assumed to have poor sensitivity in this part of the visual spectrum. Here, we investigated whether C. solorensis males can perceive the fluorescence featured in this species by testing whether the presence or absence of red fluorescence affects male–male interactions under exclusive blue illumination. Given that males respond aggressively towards mirror-image stimuli, we quantified agonistic behaviour against mirrors covered with filters that did or did not absorb long (i.e. red) wavelengths. Males showed significantly fewer agonistic responses when their fluorescent signal was masked, independent of brightness differences. Our results unequivocally show that C. solorensis can see its deep red fluorescent coloration and that this pattern affects male–male interactions. This is the first study to demonstrate that deep red fluorescent body coloration can be perceived and has behavioural significance in a reef fish.  相似文献   
9.
10.
Ionic fluxes are deeply involved in the response of spermatozoa to the egg. Using the patch-clamp technique, we show for the first time single ion channel activity in sea urchin spermatozoa and spermatozoa heads. Due to their small size gigaseals were obtained in suspended cells by applying suction through the pipette. The rate of gigaseal formation was very low and improved to 6% (n = 1145) when flagella were detached from sperm. Current-voltage curves created from single-channel events showed conductances of approx. 65 and 170 pS, suggesting the presence of two types of channels. At least one appears to be a K+ channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号